Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Pesce, Luca (Ed.)Expansion microscopy (ExM) enables sub-diffraction imaging by physically expanding labeled tissue samples. This increases the tissue volume relative to the instrument point spread function (PSF), thereby improving the effective resolution by reported factors of 4 - 20X. However, this volume increase dilutes the fluorescence signal, reducing both signal-to-noise ratio (SNR) and acquisition speed. This paper proposes and validates a method for mitigating these challenges. We overcame the limitations of ExM by developing a fast photo-stable protocol to enable scalable widefield three-dimensional imaging with ExM. We combined widefield imaging with quantum dots (QDots). Widefield imaging provides a significantly faster acquisition of a single field-of-view (FOV). However, the uncontrolled incoherent illumination induces photobleaching. We mitigated this challenge using QDots, which exhibit a long fluorescence lifetime and improved photostability. First, we developed a protocol for QDot labeling. Next, we utilized widefield imaging to obtain 3D image stacks and applied deconvolution, which is feasible due to reduced scattering in ExM samples. We show that increased transparency, which is a side-effect of ExM, enables widefield deconvolution, dramatically reducing the acquisition time for three-dimensional images compared to laser scanning microscopy. The proposed QDot labeling protocol is compatible with ExM and provides enhanced photostability compared to traditional fluorescent dyes. Widefield imaging significantly improves SNR and acquisition speed compared to conventional confocal microscopy. Combining widefield imaging with QDot labeling and deconvolution has the potential to be applied to ExM for faster imaging of large three-dimensional samples with improved SNR.more » « lessFree, publicly-accessible full text available June 13, 2026
-
null (Ed.)Super Resolution (SR) microscopy leverages a variety of optical and computational techniques for overcoming the optical diffraction limit to acquire additional spatial details. However, added spatial details challenge existing segmentation tools. Confounding features include protein distributions that form membranes and boundaries, such as cellular and nuclear surfaces. We present a segmentation pipeline that retains the benefits provided by SR in surface separation while providing a tensor field to overcome these confounding features. The proposed technique leverages perceptual grouping to generate a tensor field that enables robust evolution of active contours despite ill-defined membrane boundaries.more » « less
-
Immunohistochemical techniques, such as immunofluorescence (IF) staining, enable microscopic imaging of local protein expression within tissue samples. Molecular profiling enabled by IF is critical to understanding pathogenesis and is often involved in complex diagnoses. A recent innovation, known asmicroscopy with ultraviolet surface excitation(MUSE), uses deep ultraviolet (≈280 nm) illumination to excite labels at the tissue surface, providing equivalent images without fixation, embedding, and sectioning. However, MUSE has not yet been integrated into traditional IF pipelines. This limits its application in more complex diagnoses that rely on protein-specific markers. This paper aims to broaden the applicability of MUSE to multiplex immunohistochemistry using quantum dot nanoparticles. We demonstrate the advantages of quantum dot labels for protein-specific MUSE imaging on both paraffin-embedded and intact tissue, significantly expanding MUSE applicability to protein-specific applications. Furthermore, with recent innovations in three-dimensional ultraviolet fluorescence microscopy, this opens the door to three-dimensional IF imaging with quantum dots using ultraviolet excitation.more » « less
An official website of the United States government
